Extremal tricyclic, tetracyclic, and pentacyclic graphs with respect to the Narumi–Katayama index
نویسندگان
چکیده
منابع مشابه
extremal tetracyclic graphs with respect to the first and second zagreb indices
the first zagreb index, $m_1(g)$, and second zagreb index, $m_2(g)$, of the graph $g$ is defined as $m_{1}(g)=sum_{vin v(g)}d^{2}(v)$ and $m_{2}(g)=sum_{e=uvin e(g)}d(u)d(v),$ where $d(u)$ denotes the degree of vertex $u$. in this paper, the firstand second maximum values of the first and second zagreb indicesin the class of all $n-$vertex tetracyclic graphs are presented.
متن کاملTricyclic and Tetracyclic Graphs with Maximum and Minimum Eccentric Connectivity
Let $G$ be a connected graph on $n$ vertices. $G$ is called tricyclic if it has $n + 2$ edges, and tetracyclic if $G$ has exactly $n + 3$ edges. Suppose $mathcal{C}_n$ and $mathcal{D}_n$ denote the set of all tricyclic and tetracyclic $n-$vertex graphs, respectively. The aim of this paper is to calculate the minimum and maximum of eccentric connectivity index in $mathcal{C}_n$ and $mathcal{D}_n...
متن کاملExtremal Unicyclic and Bicyclic Graphs with Respect to Harary Index
The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. In this paper, we determined the extremal (maximal and minimal) unicyclic and bicyclic graphs with respect to Harary index. 2010 Mathematics Subject Classification: 05C90
متن کاملEccentric Connectivity Index: Extremal Graphs and Values
Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...
متن کاملSome extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index
The Hosoya index of a graph is defined as the total number of the matchings, including the empty edge set, of the graph. The Merrifield-Simmons index of a graph is defined as the total number of the independent vertex sets, including the empty vertex set, of the graph. Let U(n,∆) be the set of connected unicyclic graphs of order n with maximum degree ∆. We consider the Hosoya indices and the Me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta et Commentationes Universitatis Tartuensis de Mathematica
سال: 2019
ISSN: 2228-4699,1406-2283
DOI: 10.12697/acutm.2018.22.22